3.2.40 \(\int \frac {\sec (e+f x) (c-c \sec (e+f x))^{3/2}}{(a+a \sec (e+f x))^{3/2}} \, dx\) [140]

Optimal. Leaf size=95 \[ \frac {c^2 \log (1+\sec (e+f x)) \tan (e+f x)}{a f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}+\frac {c \sqrt {c-c \sec (e+f x)} \tan (e+f x)}{f (a+a \sec (e+f x))^{3/2}} \]

[Out]

c^2*ln(1+sec(f*x+e))*tan(f*x+e)/a/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)+c*(c-c*sec(f*x+e))^(1/2)*tan
(f*x+e)/f/(a+a*sec(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {4039, 4037} \begin {gather*} \frac {c^2 \tan (e+f x) \log (\sec (e+f x)+1)}{a f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}+\frac {c \tan (e+f x) \sqrt {c-c \sec (e+f x)}}{f (a \sec (e+f x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(c - c*Sec[e + f*x])^(3/2))/(a + a*Sec[e + f*x])^(3/2),x]

[Out]

(c^2*Log[1 + Sec[e + f*x]]*Tan[e + f*x])/(a*f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) + (c*Sqrt[c -
 c*Sec[e + f*x]]*Tan[e + f*x])/(f*(a + a*Sec[e + f*x])^(3/2))

Rule 4037

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)], x_Symbol] :> Simp[a*c*Log[1 + (b/a)*Csc[e + f*x]]*(Cot[e + f*x]/(b*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c +
d*Csc[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4039

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[2*a*c*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^(n - 1)/(b*f*(2*m +
1))), x] - Dist[d*((2*n - 1)/(b*(2*m + 1))), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x]
)^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0
] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec (e+f x) (c-c \sec (e+f x))^{3/2}}{(a+a \sec (e+f x))^{3/2}} \, dx &=\frac {c \sqrt {c-c \sec (e+f x)} \tan (e+f x)}{f (a+a \sec (e+f x))^{3/2}}-\frac {c \int \frac {\sec (e+f x) \sqrt {c-c \sec (e+f x)}}{\sqrt {a+a \sec (e+f x)}} \, dx}{a}\\ &=\frac {c^2 \log (1+\sec (e+f x)) \tan (e+f x)}{a f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}+\frac {c \sqrt {c-c \sec (e+f x)} \tan (e+f x)}{f (a+a \sec (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.05, size = 132, normalized size = 1.39 \begin {gather*} -\frac {c \cot \left (\frac {1}{2} (e+f x)\right ) \left (-2+2 \log \left (1+e^{i (e+f x)}\right )+\cos (e+f x) \left (2 \log \left (1+e^{i (e+f x)}\right )-\log \left (1+e^{2 i (e+f x)}\right )\right )-\log \left (1+e^{2 i (e+f x)}\right )\right ) \sqrt {c-c \sec (e+f x)}}{a f (1+\cos (e+f x)) \sqrt {a (1+\sec (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(c - c*Sec[e + f*x])^(3/2))/(a + a*Sec[e + f*x])^(3/2),x]

[Out]

-((c*Cot[(e + f*x)/2]*(-2 + 2*Log[1 + E^(I*(e + f*x))] + Cos[e + f*x]*(2*Log[1 + E^(I*(e + f*x))] - Log[1 + E^
((2*I)*(e + f*x))]) - Log[1 + E^((2*I)*(e + f*x))])*Sqrt[c - c*Sec[e + f*x]])/(a*f*(1 + Cos[e + f*x])*Sqrt[a*(
1 + Sec[e + f*x])]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(190\) vs. \(2(87)=174\).
time = 2.91, size = 191, normalized size = 2.01

method result size
default \(-\frac {\left (\cos \left (f x +e \right ) \ln \left (-\frac {\cos \left (f x +e \right )-1+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+\cos \left (f x +e \right ) \ln \left (\frac {-\cos \left (f x +e \right )+1+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+\ln \left (-\frac {\cos \left (f x +e \right )-1+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+\ln \left (\frac {-\cos \left (f x +e \right )+1+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-\cos \left (f x +e \right )+1\right ) \left (\frac {c \left (-1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}} \left (\cos ^{2}\left (f x +e \right )\right ) \sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}}{f \sin \left (f x +e \right )^{3} a^{2}}\) \(191\)
risch \(\frac {4 i c \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, {\mathrm e}^{i \left (f x +e \right )}}{a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}-\frac {2 i c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )}{a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}+\frac {i c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )}{a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}\) \(319\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(cos(f*x+e)*ln(-(cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))+cos(f*x+e)*ln((-cos(f*x+e)+1+sin(f*x+e))/sin(f*x+e)
)+ln(-(cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))+ln((-cos(f*x+e)+1+sin(f*x+e))/sin(f*x+e))-cos(f*x+e)+1)*(c*(-1+cos
(f*x+e))/cos(f*x+e))^(3/2)*cos(f*x+e)^2*(a*(cos(f*x+e)+1)/cos(f*x+e))^(1/2)/sin(f*x+e)^3/a^2

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 105, normalized size = 1.11 \begin {gather*} \frac {\frac {c^{\frac {3}{2}} \log \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}{\sqrt {-a} a} + \frac {c^{\frac {3}{2}} \log \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{\sqrt {-a} a} + \frac {c^{\frac {3}{2}} \sin \left (f x + e\right )^{2}}{\sqrt {-a} a {\left (\cos \left (f x + e\right ) + 1\right )}^{2}}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

(c^(3/2)*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/(sqrt(-a)*a) + c^(3/2)*log(sin(f*x + e)/(cos(f*x + e) + 1) -
 1)/(sqrt(-a)*a) + c^(3/2)*sin(f*x + e)^2/(sqrt(-a)*a*(cos(f*x + e) + 1)^2))/f

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-(c*sec(f*x + e)^2 - c*sec(f*x + e))*sqrt(a*sec(f*x + e) + a)*sqrt(-c*sec(f*x + e) + c)/(a^2*sec(f*x
+ e)^2 + 2*a^2*sec(f*x + e) + a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (- c \left (\sec {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}} \sec {\left (e + f x \right )}}{\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))**(3/2)/(a+a*sec(f*x+e))**(3/2),x)

[Out]

Integral((-c*(sec(e + f*x) - 1))**(3/2)*sec(e + f*x)/(a*(sec(e + f*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.57, size = 79, normalized size = 0.83 \begin {gather*} \frac {{\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + c \log \left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c\right ) - c\right )} c^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\sqrt {-a c} a f {\left | c \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

(c*tan(1/2*f*x + 1/2*e)^2 + c*log(c*tan(1/2*f*x + 1/2*e)^2 - c) - c)*c^2*sgn(tan(1/2*f*x + 1/2*e)^3 + tan(1/2*
f*x + 1/2*e))/(sqrt(-a*c)*a*f*abs(c))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{\cos \left (e+f\,x\right )\,{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/cos(e + f*x))^(3/2)/(cos(e + f*x)*(a + a/cos(e + f*x))^(3/2)),x)

[Out]

int((c - c/cos(e + f*x))^(3/2)/(cos(e + f*x)*(a + a/cos(e + f*x))^(3/2)), x)

________________________________________________________________________________________